
Chukyo University Institute of Economics 

Discussion Paper Series 

August 2024 

 

 

 

No. 2404 

 

Controlling Non-Point Source Pollution in 

Cournot Oligopolies 

 

 

Shumei Hirai  Akio Matsumoto 

Keiko Nakayama  Ferenc Szidarovszky 

 



Controlling Non-Point Source Pollution in
Cournot Oligopolies�

Shumei Hiraiy Akio Matsumotoz

Keiko Nakayamax Ferenc Szidarovszky{

Abstract

In this study, we consider how an environmental policy controls NPS
(non-point source) pollution when the standard environmental policies
cannot be applied since the regulator is unable to observe individual emis-
sion levels of NPS pollution. In Cournot competition, the �rms determine
the optimal output and abatement technology levels to maximize their
pro�ts, taking the environmental tax rate as given. It is analytically and
numerically demonstrated that the ambient charge tax rate can control the
total size of NPS pollution under various circumstances, such as duopoly
or oligopoly, with or without product di¤erentiation when the �rms are
homogeneous or heterogeneous.
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1 Introduction

Oligopoly models are among the most frequently discussed topics in mathe-
matical economics literature. The classical single-product model without prod-
uct di¤erentiation has been extended in many di¤erent directions, including
product di¤erentiation, multiproduct models, labor-managed oligopolies, and
rent-seeking models, among many others (Okuguchi, 1976; Okuguchi and Szi-
darovszky, 1999). Oligopoly models, including environmental issues, became an
essential line of research because of their practical importance and theoretical
challenges. There are several lines of research in this broad �eld. In the case
of point-source pollutants, the regulator knows each �rm�s pollution level to
punish or reward the �rm individually. However, in the case of nonpoint source
(NPS, henceforth) pollution, the regulator cannot monitor individual emissions
with low cost and su¢ cient accuracy. Therefore, standard instruments of envi-
ronmental policy are not possible.
The e¤ects of di¤erent environmental regulation policies are examined by

several researchers, including Downing and White (1986), Jung et al. (1996) and
Montero (2002). Xepapadeas (2011) summarizes the di¤erent control methods.
According to Segerson (1988), who suggests monitoring the ambient concentra-
tion of NPS pollutants, the regulator �rst selects an environmental standard,
imposes a uniform tax on the pollutants if the concentration is above this stan-
dard, and gives uniform reward if it is below. The regulator and the �rms have
two decision variables. The regulator decides about the environmental standard
and the environmental tax rate. The �rms can select their abatement technolo-
gies and output volumes. One important question is determining how the envi-
ronmental standard and the tax rate a¤ect the emission concentration. Ganguli
and Raju (2012) examined Bertrand duopolies and showed that increased am-
bient charges might increase the emission concentration, called the "perverse"
e¤ect. Raju and Ganguli (2013) numerically showed the e¤ectiveness of the am-
bient charge in Cournot duopolies. This result was shown analytically by Sato
(2017). The n-�rm generalization of this model was investigated by Matsumoto
et al. (2017) in a dynamic framework, and the corresponding Bertrand model
was examined by Ishikawa et al. (2019), showing that the sign of the e¤ect
depends on the number of �rms, the degree of substitutability, and the hetero-
geneity of the abatement technologies of the �rms. Matsumoto et al. (2018b)
considered a one-stage and a two-stage Bertrand duopoly, and a three-stage
Cournot oligopoly was introduced and examined by Matsumoto et al. (2020),
where, in the �rst stage, the regulator determines the tax rate of the ambient
charge to maximize social welfare, in the second stage each �rm selects optimal
abatement technology. In the third stage, the �rms decide on their optimal
output levels.
This paper considers a Cournot oligopoly. The regulator determines the

ambient charge rate to maximize the random welfare function by taking the en-
vironmental standard as given.1 Each �rm maximizes its pro�t as a bivariable

1We will consider determining the optimal tax rate maximizing social welfare in future
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function with decision variables being the ambient technology and production
level. The pro�t of each �rm includes the revenue, the production cost, the
ambient charge (or reward) and the technology installment cost. The equilib-
rium will be determined, and the e¤ectiveness of the ambient charge is shown in
various circumstances, including duopoly or oligopoly with or without product
di¤erentiation with homogeneous or heterogeneous �rms.
The paper is developed as follows. Section 2 constructs the basis n-�rm

model in which the �rms make the optimal choices of output and abatement
technology. Section 3 �rst assumes that the �rms are homogeneous and then
shows that the ambient charge e¤ectively controls the NPS pollution in duopoly
and oligopoly markets. Section 4 replaces the homogeneous with heterogeneous
assumptions and considers the ambient charge e¤ect in a duopoly with and
without product di¤erentiation. Section 6 o¤ers concluding remarks and out-
lines further research directions.

2 n-Firm Oligopoly Model

We recapitulate the main structure of the general oligopoly model constructed
by Matsumoto et al. (2017). The linear price (i.e., inverse demand) function of
good k is

pk = �k � qk � 

nP
j 6=k

qj for k = 1; 2; :::; n; (1)

in which qk is the quantity of good k, pk is its price, 
 is the substitution
parameter measuring the degree of di¤erentiation between the goods, and �k
denotes the quality of good k.2 In this study, we assume that 0 < 
 � 1 to
con�ne our analysis to the case in which the goods are substitutes. It is further
assumed that the production cost function of �rm k is linear and there is no �xed
cost. ck > 0 denotes the marginal production cost. To avoid negative optimal
production, we impose the traditional assumption that �k � ck is positive. We
can call this di¤erence the market size of �rm k and denote it by �k. Each �rm
produces output and emits pollution. It is assumed that one unit of production
emits one unit of pollution. Let �k denote the pollution abatement technology
of �rm k (0 � �k � 1) with a pollution-free technology if �k = 0 and a fully-
discharged technology if �k = 1. If �rm k believes that the competitors�outputs
will remain unchanged, then its pro�t is

�k(qk; �k) =

 
�k � qk � 


nP
j 6=k

qj

!
qk � (1� �k)2 � �

 
nP
j 6=k

�jqj � �R

!
(2)

studies.
2The price functions in (1) can be derived as solutions of the utility maximization of the

following form,

U(q) =
nP
i=1

�iqi �
1

2

 
nP
i=1

q2i + 2

nP
i=1

qi
nP
j 6=i

qj

!
�

nP
i=1

piqi:

Here, �i is a proxy for the quality of good i because an increase in �i positively a¤ects the
utility level.

3



where �R is the ambient standard set by a regulator, � is the ambient tax rate
and (1 � �i)2 is the installation cost of technology. The rate � is measured in
some monetary unit per emission. It is positive and can be larger than unity
(e.g., dollar/ton, euro/kg, etc).
Firm k strategically selects optimal output and abatement technology levels,

qk and �k; to maximize its pro�t. Di¤erentiating (2) with respect to qk and �k
presents the �rst-order conditions for interior maxima,

@�k
@qk

= �k � 2qk � 
Q�k � ��k = 0 (3)

and
@�k
@�k

= ��qk + 2 (1� �k) = 0: (4)

where Q�k =
P

j 6=k qj is the output of the rest of the industry. The second-order
conditions are

@2�k
@q2k

= �2 < 0; @
2�k

@�2k
= �2 < 0; @

2�k
@q2k

@2�k

@�2k
�
�
@2�k
@qk@�k

�2
= 4� �2 > 0

where the last inequality holds if � < 2. Using (4), we rewrite the �rst-order
conditions (3) for the optimal output as�

4� �2
�
qk + 2
Q�k = 2 (�k � �) for k = 1; 2; :::; n

or in a vector form,
Bq = A (5)

where
q = (qk)(n;1) ; A = (2 (�k � �))(n;1)

and
B = (Bij)(n;n) with Bii = 4� �

2 and Bij = 2
 for i 6= j:

Since B is invertible, solving (5) yields the Cournot outputs,

q = B�1A (6)

where the diagonal and o¤-diagonal elements of B�1 are, respectively,

4� �2 + 2 (n� 2) 
�
4� �2 + 2 (n� 1) 


� �
4� �2 � 2


� and �2
�
4� �2 + 2 (n� 1) 


� �
4� �2 � 2


� :
To guarantee 4� �2 � 2
 = (2� �2) + 2(1� 
) > 0 for analytical simplicity, we
impose the following under which the denominators of the above elements are
positive, and the second-order conditions are ful�lled:

Assumption 1. � <
p
2
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The Cournot equilibrium output of �rm k is

qCk =
2
��
4� �2 + 2 (n� 2) 


�
�k � 2
��k � �

�
4� �2 � 2


���
4� �2 + 2 (n� 1) 


� �
4� �2 � 2


� (7)

where we introduce a new notation, ��k =
Pn

j 6=k �j . From (4) and (7), we also
obtain the optimal abatement technology of �rm k,

�Ck = 1�
�

2
qCk : (8)

The right-hand side of equation (8) with (7) is expressed in a form that will
facilitate later calculations,

�
�
2
��k �

�
4� �2 + 2 (n� 2) 


�
�k
�
+ 2(2 + (n� 1)
)

�
4� �2 � 2


��
4� �2 + 2 (n� 1) 


� �
4� �2 � 2


� : (9)

Solving (8) for qCk yields an simpli�ed form,

qCk =
�
1� �Ck

� 2
�
:

The Cournot output is non-negative if �Ck � 1 and not greater than the upper
bound, 2=�; if �Ck � 0.
We will search for the parametric condition under which the optimal level

of the abatement technology is positive and not greater than unity. With (9),
solving �Ck = 0 and �

C
k = 1 for ��k presents

��k = f0 (�k) �
4� �2 + 2
(n� 2)

2

�k �

(2 + (n� 1)
)
�
4� �2 � 2


�

�

(10)

and

��k = f1 (�k) �
4� �2 + 2
(n� 2)

2

�k �

�
�
4� �2 + 2


�
2


: (11)

These equations are developed as an n-dimensional simultaneous system of lin-
ear equations in �k

��k �A�k = B for k = 1; 2; :::n (12)

and
��k �A�k = C for k = 1; 2; :::n (13)

where

A =
4� �2 + 2
(n� 2)

2

; B = �

(2 + (n� 1)
)
�
4� �2 � 2


�

�

and C = �
�
�
4� �2 + 2


�
2


:

Solving, respectively, (12) and (13) for �k yields the maximum and minimum
denoted as �M and �m,

�M =
2 [2 + (n� 1)
]

�
and �m = �: (14)
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Since, equations (10) and (12) are alternative forms of �Ck = 0; and equations
(11) and (12) are alternative forms of �Ck = 1; conditions, �Ck = 0 or �Ck = 1
holds if �k = �M or �k = �m for k = 1; 2; :::; n. Since �M > �m; 0 � �Ck � 1
holds if �m � �k � �M . We summarize the feasible conditions for the optimal
solutions as follows:

Theorem 1 The optimal productions and optimal abatement technologies sat-
isfy the feasible conditions, 0 � �Ck � 1 and 0 � qCk � �=2, if the market sizes
are in the set,

Mn = f (�1; �2; :::�n) j f1 (�k) � ��k � f0 (�k) and �m � �k � �Mg for k = 0; 1; 2; :::; n

In the case of duopoly (i.e., n = 2); the set M2 is the diamond-shaped
yellow region in Figure 1(A) surrounded by the solid red and dotted-red lines of
�Ci = 0 and �

C
i = 1 and by the solid blue and dotted-blue lines of �

C
j = 0 and

�Cj = 1: Notice that the solid blue and red curves intersect at �i = �j = �M
and so do the dotted blue and red curves at �i = �j = �m. If the two �rms are
homogeneous (i.e., �i = �j), then the feasible region is shrunk to the dotted
diagonal between �m and �M : In the case of triopoly (i.e.�n = 3), the feasible
region M3 is described by the hexahedron with diamond-shaped faces as seen
in Figure 1(B).

(A) n = 2 (B) n = 3

Figure 1. Feasible regions with � = 4=5 and 
 = 3=5

From (7) and (8), we have the following,

qCk � �qC =
2

4� �2 � 2

(�k � ��)

and

�Ck � ��
C
= ��

2

�
qCk � �qC

�
6



where the corresponding averages are de�ned as

�� =
1

n

nX
j=1

�j ; �q
C =

1

n

nX
j=1

qCj and ��
C
=
1

n

nX
j=1

�Cj :

The following results concerning the optimal decisions among the �rms are clear.

Theorem 2 The �rm with a larger market size than the average produces more
output and adopts more e¢ cient abatement technology than the corresponding
averages,

�k R �� implies qCk R �qC and �Ck Q ��
C
:

3 Homogeneous Firms

To examine the e¤ects caused by a change in the ambient charge rate on the
optimal solutions of output and technology and on the total pollution, we start
with the simpler case in which the �rms are homogeneous. For this purpose, we
impose the following:

Assumption 2. �i = � for i = 1; 2; :::; n.

Depending on the selected parametric values of 
 and n, we still have four
exclusive cases,

n = 2 n � 3

 = 1 Ho1 Ho3

 < 1 Ho2 Ho4

where the �rms are homogeneous and

(1) duopoly without product di¤erentiation in case Ho1:

(2) duopoly with product di¤erentiation in case Ho2;

(3) oligopoly without product di¤erentiation in case Ho3;

(4) oligopoly with product di¤erentiation in case Ho4.

Accordingly, the remaining part of this section is divided into two subsec-
tions: in the �rst subsection, cases Ho2 and Ho1 are mainly considered, while
case Ho3 is focused on and case Ho4 is brie�y mentioned in the second one.

3.1 Duopoly Firms with Product Di¤erentiation

We �rst examine case Ho2 in which the number of the homogeneous �rms is
limited to 2 and the goods are di¤erentiated:

Assumption 3. n = 2 and 
 < 1
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A direct consequence of Assumption 2 is that their optimal decisions are
identical. In particular, (9) with n = 2 give identical optimal abetment technol-
ogy,

�CII =
� (�M � �)
4� �2 + 2


: (15)

Here, the subscript II means case Ho2: From (15),

1� �CII =
� (� � �m)
4� �2 + 2


:

where, from (14) with n = 2;

�M (�) =
2(2 + 
)

�
and �m(�) = �.

Optimal technology �CII is then substituted into (8) to have the optimal output,

qCII =
2
�
1� �CII

�
�

=
2 (� � �m)
4� �2 + 2


> 0 if �CII < 1: (16)

Since the denominator of �CII in (15) is positive, we have the following as a
Corollary of Theorem 1:

Corollary 1 Under Assumptions 1, 2 and 3, the optimal output and optimal
technology satisfy 0 � qCII � 2=� and 0 � �

C
II � 1 if and only if �m � � � �M :

Notice that Figure 2(A) visualizes Corollary 1. The negative-sloping black
locus of � = �M (�) and the positive-sloping black locus of � = �m(�) are the
upper and lower boundaries of the yellow region.3 The feasible conditions of
0 � �CII � 1 and 0 � qCII � 2=� hold in the yellow region. Figure 2(B) illustrates
the e¤ects of an increase of 
 from 2=5 to 4=5 on the locations of various curves,
indicating that the greater the substitutability, the greater the stability region:

(i) an enlargement e¤ect by shifting the upper black, green and red curve
upwards;

3We will refer to the red negative- and blue positive-sloping curves inside the yellow region
of Figure 2(A) soon after.
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(ii) no e¤ect on the lower black curve that depends only on �.

(A) 
 = 3=5 (B) 
 = 2=5 to 
 = 4=5

Figure 2. Feasible region of (�; �) for 0 < �CII < 1 and � = 4=5

The total amount of production pollution is the sum of the individual pol-
lution. In the homogeneous duopoly case, it is given by

ECII(�) = 2�
C
II(�)q

C
II(�):

Di¤erentiating �CII(�)q
C
II(�) with respect to � yields, after arranging the terms,

�
2
�
(4 + 2
 + 3�2)�2 � 2�(12 + 6
 + �2)� + 2(2 + 
)(2 + 
 + 3�2)

�
(4 + 2
 � �2)3

: (17)

The denominator is positive. The bracketed terms of the numerator form a
quadratic polynomial in �, having a positive constant term. Its discriminant is
negative,

D=4 = �
�
4� �2 + 2


�3
< 0:

Hence, the polynomial is positive for any �, implying that the derivative in (17)
is negative. Therefore,

dECII(�)

d�
= 2

d
h
�CII(�)q

C
II(�)

i
d�

< 0: (18)

The direction of inequality means that an increase of the ambient charge rate
decreases the total amount of pollution. This result is summarized as follows:

Theorem 3 In a homogeneous duopoly with product di¤erentiation, the ambi-
ent charge rate can control the concentration of the NPS pollutions,

dECII
d�

< 0:

9



We consider why the ambient charge can be e¤ective in controlling pollution.
Di¤erentiating (15) and (16) with respect to � gives

d�CII
d�

=
4 + 2
 + �2

4 + 2
 � �2
�
2�(4 + 2
)

4 + 2
 + �2
� �

�
(19)

and
dqCII
d�

=
4��

4 + 2
 � �2
�2 �� � 4 + 2
 + �22�

�
: (20)

Accordingly, two new functions are introduced,

�0(�) =
2�(4 + 2
)

4 + 2
 + �2
and �1(�) =

4 + 2
 + �2

2�
:

The � = �0(�) curve corresponds to the positive-sloping green curve located just
above the � = �m(�) line in Figure 2(A). Equation (19) leads to the following
relations,

d�CII
d�

R 0 according to � Q �0(�):

Thus in the shaded yellow region surrounded by the two curves, � = �m(�) and
� = �0(�), the following inequality holds:

d�CII
d�

> 0:

Individual �rms paradoxically respond to government�s increased ambient charge
taxation by adopting less abatement technologies when the market sizes are
small.
Similarly, the � = �1(�) curve corresponds to the negative-sloping red curve

located just below the � = �M (�) curve where the following relations hold:

dqCII
d�

R 0 according to � R �1(�):

In the shaded yellow region surrounded by these two curves, � = �M (�) and
� = �1(�), we have

dqCII
d�

> 0:

The �rms increase their optimal production in response to higher taxes when
their market sizes are larger. Summarizing the results, we can divide the stable
yellow region into three subregions in which

(i)
dqCII
d�

< 0 and
d�CII
d�

� 0 for �m(�) � � � �0(�);

(ii)
dqCII
d�

< 0 and
d�CII
d�

< 0 for �0(�) < � < �1(�);

(iii)
dqCII
d�

� 0 and d�
C
II

d�
< 0 for �1(�) � � � �M (�):

(21)
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If the ambient tax rate change has an unfavorable e¤ect on the variables, we call
it a perverse e¤ect. Although the regulator cannot observe the individual �rm�s
reactions to a change in �; their optimal responses are summarized as follows:

Theorem 4 The ambient tax rate has a perverse e¤ect on the optimal technol-
ogy if � is small enough in the sense that �m(�) � � � �0(�) and on the optimal
output if � is large enough in the sense that �1(�) � � � �M (�) whereas it has
a normal e¤ect on both variables if � takes a normal value in the sense that
�0(�) < � < �1(�):

We now turn attention to the relative magnitude of these normal and per-
verse e¤ects. Di¤erentiating ECII(�) = 2�CII(�)q

C
II(�) with respect to � and

arranging the terms present

dECII(�)

d�
= 2

�CII(�)q
C
II(�)

�

�
"C� + "

C
q

�
where "C� and "

C
q denote the elasticities of technology and output with respect

to ambient charge rate de�ned as

"C� =
�

�CII

d�CII
d�

and "Cq =
�

qCII

dqCII
d�

Since � can have a perverse e¤ect, as discussed, the sign of dECII(�)=d� depends
on the relative magnitudes between "C� and "Cq in absolute values. In case
(ii) of (21) or in the non-striped yellow region of Figure 2(A), both elasticities
are negative, implying that dECII(�)=d� < 0. On the other hand, the sign of
dECII(�)=d� in case (i) or in case (iii) seems to be ambiguous because the two
elasticities are of opposite signs. However, Theorem 3 has already con�rmed
dECII(�)=d� < 0 in both regions: in case (i), the negative elasticity of the optimal
output dominates the positive elasticity of the technology; in case (iii), the
negative elasticity of the optimal technology dominates the positive elasticity
of the optimal output. Hence, in both cases, the normal e¤ect dominates the
perverse e¤ect. This is summarized as a Corollary of Theorem 3.

Corollary 2 Although a change in the ambient tax rate possibly induces the
opposite-signed normal and perverse e¤ects, depending on the value of �, the
normal e¤ect always dominates the perverse e¤ect,

"C� + "
C
q < 0 for �m(�) � � � �0(�) or for �1(�) � � � �M (�).

Summarizing the results obtained in case Ho2, we see that the substitution
parameter 
 has the enlargement e¤ect and the ambient tax rate � can control
the NPS pollution. It is not di¢ cult to verify the same results obtained in
Theorem 3 and Corollaries 1 and 3 in case Ho1; for the more simpli�ed case
where n = 2 and 
 = 1.
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3.2 Oligopoly without Product Di¤erentiation

In this section, we will con�ne ourselves to the general n-oligopoly case, Ho3; in
which we get rid of Assumption 3 and impose, only for analytical simplicity, the
assumption that the goods are not di¤erentiated.

Assumption 4. n > 2 and 
 = 1:

The homogenous assumption (i.e., �i = �) and no product di¤erentiation
(i.e., 
 = 1) simplify (7) and (9),

qCIII =
2 (� � �)

2(n+ 1)� �2
; (22)

�CIII =
2 (n+ 1)� ��
2(n+ 1)� �2

(23)

and

1� �CIII =
� (� � �)

2(n+ 1)� �2
(24)

where the subscript III means case Ho3. From (14) and Assumption 4, 0 �
�CIII � 1 and 0 � qCIII � 1 hold if

� � � � 2 (n+ 1)

�
: (25)

We now consider the e¤ects of changing � on these optimal values. Di¤er-
entiating �CIII and q

C
III with respect to � yields the following:

@�CIII
@�

=
2(n+ 1) + �2�
2(n+ 1)� �2

�2 [�0(�; n)� �]
and

@qCIII
@�

=
4��

2(n+ 1)� �2
�2 [� � �1(�; n)]

where

�0(�; n) =
4�(n+ 1)

2(n+ 1) + �2
and �1(�; n) =

2(n+ 1) + �2

2�
:

In Figure 3(A), the yellow region is surrounded by the two black curves ob-
tained in (25), the positive-sloping � = � curve and the negative-sloping � =
2 (n+ 1) =� curve. The loci of � = �0(�; n) and � = �1(�; n) are the green and
red curves. So we have

@�CIII
@�

R 0 according to � Q �0(�; n)

and
@qCIII
@�

R 0 according to � R �1(�; n).
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In the upper shaded yellow region of Figure 3(A) between the negative-sloping
black and red curves, the optimal production has a perverse e¤ect,

@�CIII
@�

< 0 and
@qCIII
@�

> 0:

On the other hand, in the lower shaded yellow region between the positive-
sloping black and green curves, the optimal abatement technology has a perverse
e¤ect,

@�CIII
@�

> 0 and
@qCIII
@�

< 0:

In the yellow region between the red and green curves, both have the normal
e¤ect,

@�CIII
@�

< 0 and
@qCIII
@�

< 0:

Figure 3(B) depicts the e¤ects of increasing the value of n from 3 to 4 on the op-
timal values, which shift the upper black, red and green curves upward. Hence,
the larger n enlarges the feasible yellow region. Figures 3(A) and (B) with n = 3
and 
 = 1 look quite similar to Figures 2(A) and (B) with n = 2 and 
 < 1. The
e¤ects caused by changing the substitution term have the similar e¤ect caused
by changing the number of �rms. One quantitative di¤erence is that �M in case
Ho2 has the upper bound in 
 (i.e., 6=�) whereas �M in case Ho3 has no upper
bound in n.

(A) n = 3 and � = 4=5 (B) n = 3 and n = 4

Figure 3. Feasible region and e¤ects caused by increasing n

The total amount of production pollution is the sum of individual pollution,

ECIII(�) = n�
C
III(�)q

C
III(�):

(22) and (23) reduce it to a simpler and manageable form

ECIII(�) = n
2 (� � �) [2(n+ 1)� ��]

[2(n+ 1)� �]2
: (26)

13



Di¤erentiating (26) with respect to � yields

dECIII(�)

d�
= �2ns(n; �)�

2 � 2u(n; �)� + v(n; �)�
2(n+ 1)� �2

�3 (27)

with
s(n; �) = 2(n+ 1) + 3�2 > 0;

u(n; �) = �
�
6(n+ 1) + �2

�
> 0;

v(n; �) = 2(n+ 1)
�
2(n+ 1) + 3�2

�
> 0:

The denominator of (27) is positive under Assumption 1. The numerator is a
quadratic polynomial in �; having the positive constant term, v(n; �) > 0. Its
discriminant is negative,

D

4
= �

�
2(n+ 1)� �2

�3
< 0:

As a result, the numerator is positive for any � > 0: Therefore, we arrive at the
following:

Theorem 5 In a homogeneous oligopoly market without production di¤erenti-
ation, the ambient charge tax rate is e¤ective in controlling the concentration of
the NPS pollution,

dECIII(�)

d�
< 0:

Applying the procedure developed in caseHo3 for caseHo4; we can probably
see that (i) the substitution parameter 
 has an enlargement e¤ect on the feasible
region, and the ambient charge has pollution controllability. The homogeneity
assumption contributes to simplifying the analysis.

4 Heterogeneous Firms

In this section, we consider the ambient charge on the optimal behavior and the
total pollution when the �rms are heterogeneous. To this end, we replace the
homogeneous assumption (i.e., Assumption 2) with the heterogeneous assump-
tion,
Assumption 5 �j 6= �j for j = 1; 2; :::; n and i 6= j:
We then study how the ambient charge a¤ects the heterogeneous �rms in

the four exclusive cases, depending on the selected parameter values:

n = 2 n � 3

 = 1 He1 He3

 < 1 He2 He4

where the heterogeneous �rms form

14



(1) duopoly without product di¤erentiation in case He1;

(2) duopoly with product di¤erentiation in case He2;

(3) oligopoly without product di¤erentiation in case He3;

(4) oligopoly with product di¤erentiation in case He4.

Accordingly, this section is divided into two subsections. We consider case
He2 in the �rst subsection and case He3 in the second. Cases He1 and He4 are
brie�y mentioned at the end of these subsections.

4.1 Duopoly Firms without Product Di¤erentiation

We start with the simpler case of He1 in which we impose the following:
Assumption 6. n = 2 and 
 = 1
From (7) and (9), the optimal decisions are

qIi (�) =
2
�
(4� �2)�i � 2�j

�
� 2�(2� �2)

(2� �2)
�
6� �2

� ; (28)

�Ii (�) =
�
�
2�j � (4� �2)�i

�
+ 6(2� �2)

(2� �2)
�
6� �2

� : (29)

Equations (10) and (11) with Assumption 6 determine the boundaries of the
feasible region of each �rm. For �rm i; the locus of �Ii (�) = 0 is described by

�j = f0(�i) �
4� �2

2
�i �

3(2� �2)
�

and the locus of �Ii (�) = 1 by

�j = f1(�i) �
4� �2

2
�i �

�(2� �2)
2

:

In the same way, we obtain the boundaries for �rm j, �i = f0(�j) and �i =
f1(�j): For graphical convenience, solving these equations for �j to have the
boundaries for �rm j in terms of �i,

�j = g0(�i) �
2

4� �2
�i +

6(2� �2)
�
�
4� �2

�
and

�j = g1(�i) �
2

4� �2
�i +

�(2� �2)
4� �2

.

As in Figure 1, the lines of �j = gk(�i) for k = 0; 1 construct the upper and
lower sides of the diamond-shaped yellow region while the lines of �j = fk(�i) for

15



k = 0; 1 the left and right sides. The feasible conditions, 0 � �Ii (�) � 1 and
0 � qIi (�) � �=2 hold in the yellow region.

Figure 4. The feasible region with � = 4=5

The total amount of NPS pollution is the sum of individual pollutions,

EC
I (�) = E

I
i (�) + E

I
j (�) where E

I
k(�) = �

I
k(�)q

I
k(�) for k = i; j:

Di¤erentiating it with respect to � yields

dEC
I (�)

d�
= �2

FI
�
�i; �j ; �

��
2� �2

�3 �
6� �2

�3 (30)

where the numerator is written as

FI
�
�i; �j ; �

�
= A (�)

�
�2i + �

2
j

�
+B (�)

�
�i + �j

�
+ C (�)�i�j +K (�) (31)

with
A (�) = 240 + 192�2 � 144�4 + 32�6 � 3�8;

B (�) = �2�
�
2� �2

�3 �
18 + �2

�
< 0;

C (�) = �8
�
48 + 60�2 � 36�4 + 5�6

�
;

K (�) = 36
�
2 + �2

� �
2� �2

�3
> 0:

For � 2 (0;
p
2), we analytically verify that the denominator of (30) is positive,

B (�) < 0 and K (�) > 0 and numerically check that A (�) > 0 and C (�) < 0.
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We eliminate � in FI
�
�i; �j ; �

�
for the notational simplicity. Notice that

FI
�
�i; �j

�
can be rewritten as a quadratic polynomial in �i,

FI
�
�i; �j

�
= Ai�

2
i +Bi�i +GI(�j) (32)

where
Ai = A (�) ; Bi = B (�) + C (�)�j

and
GI(�j) = A (�)�

2
j +B (�)�j +K (�) : (33)

Notice that GI(�j) is also a quadratic polynomial in �j . In the following, we
will �rst focus on GI(�j) and check its discriminant to �nd whether GI(�j) < 0
for all �j � 0. Then, we turn attention to the discriminant of FI

�
�i; �j

�
in

�i and validate that this discriminant is also negative for all �i � 0 to show
FI
�
�i; �j

�
> 0 for any nonnegative �i and �j .

Our �rst result is the following:

Lemma 1 GI(�j) > 0 for all �j � 0:

Proof. The discriminant of GI(�j) from (33) is

DG = B (�)
2 � 4A (�)K (�)

= ��2
�
2� �2

�3 �
11232 + 144�2 � 4400�4 + 1056�6

�
:

The third factor in the last line is positive for � 2 (0;
p
2); we then haveDG < 0.

With A (�) > 0; GI(�j) is convex and GI(0) = K (�) > 0. Hence, GI(�j) > 0
for all �j � 0.

With Lemma 1, we have GI(�j) > 0 and Ai > 0. Then, FI
�
�i; �j

�
is convex

in �i and FI
�
0; �j

�
= GI(�j) > 0: The discriminant of FI

�
�i; �j

�
with respect

to �i is quadratic in �j ,

DF = B2i � 4AiGI(�j)

=
�
C2 � 4A2

�
�2j + 2B (C � 2A)�j +

�
B2 � 4AK

�
:

where � in A (�) ; B (�) ; C (�) and K (�) is eliminated for notational simplicity.
Let us denote the quadratic form in the last line by g

�
�j
�
. For �j = 0; it takes

a negative value,
g (0) = B2 � 4AK =DG < 0;

and the coe¢ cient of �2j is clearly negative for � 2 (0;
p
2);

C2 � 4A2 = �12
�
2� �2

�3 �
6� �2

�3 �
2 + �2

� �
2 + 3�2

�
< 0:

Hence, g
�
�j
�
is concave in �j with g (0) < 0. We then have the following:

17



Lemma 2 g
�
�j
�
< 0 for all �j � 0.

Proof. The discriminant of g
�
�j
�
is negative as

Dg=4 = [B (C � 2A)]2 �
�
C2 � 4A

� �
B2 � 4AD

�
;

= �128A
�
2� �2

�6 �
6� �2

�6
(2 + 3�2) < 0:

where the direction of the inequality is due to that all factors are positive for
� 2 (0;

p
2): This completes the proof.

Lemma 1 indicates that FI
�
�i; �j

�
is convex in �i and FI

�
0; �j

�
= GI(�j) <

0. Lemma 2 implies that DF = g
�
�j
�
< 0 leading to FI

�
�i; �j

�
> 0 for any

�i � 0 and �j � 0: Therefore, these lemmas imply the following:

Theorem 6 In a heterogenous duopoly market with no production di¤erenti-
ation, the ambient charge is e¤ective in controlling the total of NPS pollution
when the duopoly �rms are heterogenous,

dEC
I (�)

d�
< 0 for � 2 (0;

p
2).

4.2 Duopoly Firms with Product Di¤erentiation

In this section, we move one step forward by replacing 
 = 1 with 
 < 1 and
see how product di¤erentiation a¤ects the �rms�behavior in case He2 under
Assumption 3 (i.e., n = 2 and 
 < 1).4

From (7) and (9), the optimal decisions are

qIIi (�) =
2
�
(4� �2)�i � 2
�j

�
� 2�(4� �2 � 2
)

(4� �2 + 2
)
�
4� �2 � 2


� ; (34)

�IIi (�) =
�
�
2
�j � (4� �2)�i

�
+ 2(2 + 
)(4� �2 � 2
)

(4� �2 + 2
)
�
4� �2 � 2


� : (35)

Equations (10) and (11) with Assumption 3 determine the boundaries of the
feasible region of each �rm. For �rm i; the locus of �IIi (�) = 0 is described by

�j = f0(�i) �
4� �2

2
�i �

(2 + 
)(4� �2 � 2
)

�

and the locus of �IIi (�) = 1 is by

�j = f1(�i) �
4� �2

2
�i �

�(4� �2 � 2
)
2

:

4Matsumoto and Szidrovszky (2024) have already considered this case. We summarize
their procedure and results here.
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In the same way, we obtain the boundaries for �rm j, �i = f0(�j) and �i =
f1(�j), both of which are solved for �j to have the alternative forms of �rm j�s
boundaries in terms of �i,

�j = g0(�i) �
2

4� �2
�i +

2(2 + 
)(4� �2 � 2
)
�
�
4� �2

�
and

�j = g1(�i) �
2

4� �2
�i +

�(4� �2 � 2
)
4� �2

.

As in Figure 1, Figure 5(A) constructs the diamond-shaped yellow feasible
region in which the upper and lower sides are described by �j = gk(�i) for k =
0; 1 and the left and right sides by �j = fk(�i) for k = 0; 1. In Figure 5(B), the
dotted diamond-shaped region with 
 = 1 overlays on the solid diamond-shaped
region with 
 = 3=5: Comparing these two regions, we �nd that decreasing 

transforms the longer and narrower diamond shape to the shorter and wider
one. It seems that the solid diamond is larger than the dotted area. However,
it is not clear which is larger or whether increasing homogeneity of the good
produces a larger feasible region.

(A) 
 = 3=5 (B) 
 = 1 and 
 = 3=5

Figure 5. Feasible regions with � = 4=5 and various 


We now consider the ambient charge e¤ect when the �rms are heterogenous,
�i 6= �j . The total amount of NPS pollution is the sum of individual pollutions,

EC
II(�) = E

II
i (�) + E

II
j (�) where E

II
k (�) = �

II
k (�)q

II
k (�) for k = i; j:

Di¤erentiating it with respect to � yields

dEC
II(�)

d�
= �

2FII(�i; �j)�
4 + 2
 � �2

�3 �
4� 2
 � �2

�3 (36)
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where the denominator is positive, the numerator FII(�i; �j) has the form,

FII(�i; �j) = A (
; �)
�
�2i + �

2
j

�
+B (
; �)

�
�i + �j

�
+ C (
; �)�i�j +K (
; �)

(37)
with

A (
; �) = 16
�
4� 
2

� �
4 + 
2

�
+ 48
2�2

�
4� �2

�
� �4

�
96� 32�2 + 3�4

�
;

B (
; �) = �2�
�
4� 2
 � �2

�3 �
12 + 6
 + �2

�
;

C (
; �) = �8

�
4
2

�
3�2 � 4

�
+ (4� �2)2(4 + 5�2)

	
;

K (
; �) = 4 (2 + 
)
�
4 + 2
 + 3�2

� �
4� 2
 � �2

�3
:

Since the domains of the variables are

0 < 
 < 1 and 0 < � <
p
2;

B (
; �) > 0 and K (
; �) < 0 are analytically veri�ed, and it is possible to
numerically con�rm that A (
; �) < 0 and C (
; �) > 0, although they have
rather complicated forms.

FII
�
�i; �j

�
= A�2i +

�
B + C�j

�
�i +GII(�j) (38)

where
GII(�j) = A�

2
j +B�j +K:

Notice that the variables 
 and � are omitted only for notational simplicity.
Comparing (31) and (32) with (37) and (38), we �nd that the forms of FI

�
�i; �j

�
and FII

�
�i; �j

�
are qualitatively the same. We also see that GI(�i; �j) and

GII(�i; �j) are also quadratic polynomials in �j . Taking the two-step procedure
similar to the one used in Section 4.1, we will demonstrate that FII

�
�i; �j

�
is

negative for any �i � 0 and �j � 0 in three steps (i.e., Lemma 3; Lemma 4 and
Theorem 7).

Lemma 3 GII(�j) < 0 for any �j � 0:

Proof. GII(�j) is quadratic in �j and its discriminant is

DG = �
�
4 + 2
 � �2

� �
4� 2
 � �2

�
h(
; �)

where

h(
; �) = 16 (2� 
)
�
4 + 
2

�
+ �2

�
12
�
4 + 8
 � 
2

�
+ �2

�
48� 12
 � �2

��
:

Under Assumptions 1 and 3, h(
; �) > 0 is con�rmed, which then implies
DG < 0. With A < 0 and K < 0; GII(�j) is concave in �j and has a neg-
ative discriminant with GII(0) = K < 0. Hence, GII(�j) < 0 for all �j � 0.
This completes the proof.
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Retuning to equation (38), we see that FII
�
�i; �j

�
is concave in �i as A < 0

and FII
�
0; �j

�
= GII(�j) < 0. Its discriminant for �i is

DF = 4
�
4 + 2
 � �2

�3 �
4� 2
 � �2

�3
g(�j) (39)

where
g(�j) = ag(
; �)�

2
j + 2bg(
; �)�j + cg(
; �) (40)

with
ag(
; �) = �

�
4 + 2
 + 3�2

�3 �
4� 2
 + 3�2

�
< 0;

bg(
; �) = �(4� 2
 � �2)
�
12 + 6
 + �2

�
> 0;

cg(
; �) = �h(
; �) < 0:

We then have the following:

Lemma 4 g
�
�j
�
< 0 for any �j � 0:

Proof. g(�j) is quadratic in �j and its discriminant is

Dg = 8
�
4� 2
 + 3�2

�
A < 0.

Since g(�j) is concave in �j and g(0) < 0, we have g
�
�j
�
< 0 for any �j � 0.

This completes the proof.

Lemma 4 implies that DF < 0 for any �j � 0: Hence, from Lemmas 3 and
4, FII

�
�i; �j

�
is negative for any �i � 0 and �j � 0: Therefore, we arrive at

the following result:

Theorem 7 In a heterogenous duopoly market with product di¤erentiation, the
ambient charge is e¤ective in controlling the total amount of NPS pollution,

dEC
II(�)

d�
< 0 for � 2 [0;

p
2].

4.3 Semi-Identical Firms

Although the ambient charge issue becomes too complex in a general setting of
n � 3; we examine the special case of He4 when the �rms are semi-identical
heterogeneous in the following sense,

Assumption 7. �i 6= �j and �j = � for j 6= i; j = 1; 2; :::i� 1; i+ 1; :::; n:
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Quantities (7) and (9) with the speci�ed value of n determine the optimal
productions, qCk (�) and the optimal abatement technology, �

C
k (�) for k = i; j,

qCi (�) =
2
�
(4� �2 + 2(n� 2)
)�i � 2(n� 1)
�j

�
� 2�(4� �2 � 2
)

(4� �2 + 2(n� 1)
)
�
4� �2 � 2


� ;

�Ci (�) =
�
�
2(n� 1)
�j � (4� �2 + 2(n� 2)
)�i

�
+ 2 (2 + (n� 1)
) (4� �2 � 2
)

(4� �2 + 2(n� 1)
)
�
4� �2 � 2


� ;

and

qCj (�) =
2
�
(4� �2)�j � 2
�i

�
� 2�(4� �2 � 2
)

(4� �2 + 2(n� 1)
)
�
4� �2 � 2


� ;

�Cj (�) =
�
�
2
�i � (4� �2)�j

�
+ 2 (2 + (n� 1)
) (2� �2 � 2
)

(4� �2 + 2(n� 1)
)
�
4� �2 � 2


� :

To determine the feasible region, we solve �Ci (�) = 0 and �
C
i (�) = 1 for �j to

obtain

f0(�i) =
4 + 2(n� 2)
 � �2

2(n� 1)
 �i +
(2 + (n� 1)
) (4� �2 � 2
)

(n� 1)
�

and

f1(�i) =
4 + 2(n� 2)
 � �2

2(n� 1)
 �i �
�(4� �2 � 2
)
2(n� 1)
 :

By the same token, we solve �Cj (�) = 0 and �
C
j (�) = 1 for �j to obtain

g0(�i) =
2


4� �2
�i +

(2 + (n� 1)
) (4� �2 � 2
)
�
�
4� �2

�
and

g1(�i) =
2


4� �2
�i �

�(4� �2 � 2
)
4� �2

:

Figure 6(A) illustrates the feasible region with � = 4=5; 
 = 3=5 and n = 3:
Figure 6(B) overlays three feasible regions with n = 3 (the black diamond
shape), n = 4 (the red diamond shape) and n = 5 (the blue diamond shape).
Each region has the common value of �m and becomes longer and narrower as
n increases.
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(A) n = 3 (B) n = 3; 4; 5

Figure 6. Feasible regions with � = 4=5; 
 = 3=5 and various values of n

The total amount of NPS pollution is the sum of individual pollutions:

EC(�) = ECi (�) + (n� 1)ECj (�) where ECk (�) = �Ck (�)qCk (�) for k = i; j:

Di¤erentiating EC(�) with respect to � yields

dEC(�)

d�
= �

2F (�i; �j ; 
; �; n)�
4� 2
 � �2

�3 �
4 + 2 (n� 1) 
 � �2

�3 (41)

where

F (�i; �j ; 
; �; n) = Ai�
2
i +Aj�

2
j +Bi�i +Bj�j + Cij�i�j +K: (42)

The full forms of the coe¢ cients of �i and �j and the constant term K in (42)
are provided in Appendix as these are too long to present here. Although it
is possible to follow the procedure used in the previous sections to show the
controllability of the ambient charge, we numerically examine the degree of the
controllability in this section. We specify the parameter values as

� = 4=5 and 
 = 3=5:

For n = 3; the derivative in (41) is

dEC(�)

d�
= �

125
�
ai�

2
i + aj�

2
j + bi�i + bj�j + cij�i�j + k

�
7558272

with

ai = 39515; aj = 44780; bi = �20088; bj = �40176; cij = �98500; k = 101088
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When n increases to 10; the corresponding derivative is

dEC(�)

d�
= �

125
�
ai�

2
i + aj�

2
j + bi�i + bj�j + cij�i�j + k

�
898327746

with

ai = 39515; aj = 44780; bi = �20088; bj = �40176; cij = �98500; k = 101088

(A) n = 3 (B) n = 10

Figure 7. The dEC(�)=d� surface over the feasible region

Theorem 8 Given Assumptions 1 and 2, the ambient charge is e¤ective in
controlling the total amount of NPS pollution when the �rms are semi-identical
heterogenous:

dEC

d�
< 0.

5 Concluding Remarks

This paper investigates whether the ambient charge can control the total NPS
pollution in various circumstances, duopoly or oligopoly with or without product
di¤erentiation, when the �rms are homogeneous or heterogeneous. To this end,
we adopt the game-theoretic approach in which the �rms are pro�t maximizers,
taking their competitor�s behavior as given. First, the Nash equilibrium is
determined, and then a comparative study is performed to validate how a change
in the environmental tax rate a¤ects the optimal choices of output, abatement
technology, and the total concentration of NPS pollution. It is analytically
or numerically demonstrated that the ambient charge e¤ectively controls NPS
pollution.
The research reported in this paper can be continued and extended in sev-

eral directions. Since the regulator�s behavior (i.e., environmental tax rate)
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was given, we should de�ne a social welfare function involving uncertainty and
determine the optimal tax rate to maximize this welfare function. Oligopolies
with n-�rms can be modeled as an (n+ 1)-player game when the �rms and the
regulator are the players. Its equilibrium analysis might o¤er some interesting
results. We can also introduce the dynamic extensions of these models with and
without time delays. Further, linear price and cost functions are convenient but
con�ne our attention only to a limited area. Replacing them with nonlinear
ones will be an appealing extension.

25



Appendix

Notice �rst that all calculations in this Appendix are done with Mathemat-
ica, version 13. Notice second that all functions de�ned below depend only on

, � and n: Assumptions 1 and 2 restrict the domains of 
 and � to

0 < 
 < 1 and 0 < � <
p
2

and integer n is greater than or equal to 2. Hence, it is possible to analytically
or numerically verify whether these parameter values are positive or negative,
even though they have complicated forms.
The full forms of the coe¢ cients of equations (41) and (42) are

Ai = �3�8 + ai6�6 + ai4�4 + ai2�2 + ai0

with
ai6 = 32 + 18(n� 2)
;

ai4 = �
�
120(n� 2)
 + 12

�
2(n� 2)2 + n2

�

2 + 96

	
;

ai2 = 24

�
4(n� 2) + 4((n� 1)2 + 1)
 + (n� 2)(n2 � (n� 1))
2

�
;

ai0 = 16(2� 
)(2 + (n� 1)
)
�
4(1 + (n� 2)
) + (n2 � 3(n� 1))
2

�
and

Aj = (n� 1)
�
�3�8 + aj6�6 + aj4�4 + aj2�2 + aj0

�
with

aj6 = 32 + 2(n� 2)
;

aj4 = 24(n� 2)
 � 48(n� 1)
2 � 96;

aj2 = 24

�
�4(n� 2) + 8(n� 1)
 + (n� 2)(n� 1)
2

�
aj0 = �16(2� 
)(2 + (n� 1)
) +

�
4 + (n� 1)
2

�
and

Bi = �2�(4� 2
 � �2)3
�
12 + 6(n� 1)
 + �2

�
;

Bj = �2�(n� 1)(4� 2
 � �2)3
�
12 + 6(n� 1)
 + �2

�
;

and
Cij = 8(n� 1)
(�5�6 + c4�4 + c2�2 + c0);

with
c4 = 9 [4 + (n� 2)
] ;

c2 = �
�
24(n� 2)
 � 12(n� 1)
2 + 6n2
2

�
c0 = �4(2� 
)(2 + (n� 1)
) (4 + (n� 2)
)

and
K = 2n(2 + (n� 1)
)(4� 2
 � �2)3

�
4 + 2(n� 1)
 + 3�2

�
:
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